Transportation Fundamentals: Electric Vehicles

28 January 2019

Scott Hardman Ph.D.
Postdoctoral Researcher – UC Davis Plug-In Hybrid & Electric Vehicle Research Center

Colin Murphy Ph.D
Deputy Director – UC Davis Policy Institute for Energy, Environment, and the Economy
Who We Are:

Graduate Degree Programs
- Transportation Technology & Policy
- Energy Systems

Research Centers
- Sustainable Transportation Energy Pathways
- Plug-in Hybrid & Electric Vehicle Research Center
- Energy Futures Program
- China Center for Energy and Transportation
- Sustainable Freight Center

Partner Programs
- National Center for Sustainable Transportation (NCST)
- UC Institute of Transportation Studies
- UC Pavement Research Center
- Policy Institute for Energy, Environment and the Economy
- Program on International Energy Technologies

Energy and Efficiency Institute
- California Lighting Technology Center
- Western Cooling Efficiency Center
- Center on Water-Energy Efficiency
PH&EV Center

Researchers
Dr. Gil Tal, PEV Markets, Travel Behavior
Prof. Daniel Sperling, Institute of Transportation Studies Director
Dr. Tom Turrentine, World Market, supply and demand
Dr. Ken Kurani, Consumer Studies
Dr. Alan Jenn, PEV Regulations and Market Models
Dr. Angela Sanguinetti, Energy Feedback Systems
Dr. Scott Hardman, Global Policy, Consumer adoption
Dr. Jaehyun Lee, GIS and travel data analysis
Dr. Debapriya Chakraborty, Transportation economics
Dr. Yan Xing, China Center and PH&EV Center
Dr. Chris Nitta, Professor of Computer Science
Dr. Aria Berliner, New Mobility
Prof. David Rapson, UC Davis Economics
Prof. Davis Bunch, UC Davis School of Management

Program Manager
Dahlia Garas

5 Research Staff, programmers, visiting scholars

10 Graduate Students

12 Undergraduate Students
280+ publications, 42 papers in 2017, 17+ under review
Introduction

• Electric Vehicles & Batteries
• Current EV Market
• EV Incentives
• ZEV Regulation
• Environmental Impacts of EVs
• Costs of EVs
• Consumer Experience

Key Terms:

EV – Electric Vehicle – A vehicle which uses electricity from an external source for motive power.

Hybrid – A vehicle which uses electricity generated on-board the vehicle to supply some motive power.

ZEV – Zero-Emission Vehicle – Regulatory term meaning a vehicle which can drive at least part of the time with no air pollutant emissions. Includes electric vehicles, fuel cell vehicles and plug-in hybrids.
Many Kinds of EV’s, Including Battery Electric and Plug-in Hybrid

Battery Electric Vehicles (BEVs)
• Powered only by a battery
• Electric range 100-300 miles
• Price $30,000-100,000

Examples: Tesla’s, Chevy Bolt, Nissan Leaf, Hyndai Ioniq (Electric Version)

Plug-in Hybrid Electric Vehicles (PHEVs)
• Combination of gasoline and battery
• Electric Range 12-50 miles, gas range 300 miles
• Price $25,000-100,000

Examples: Toyota Prius Prime, Chevy Volt, Ford C-Max Energi, Hyndai Ioniq (Plug-in Hybrid Version), Chrysler Pacifica Hybrid
Fuel Cell Electric Vehicles

Fuel Cell Vehicles (FCVs)

• Driving range 300 miles
• Refueled by hydrogen at one of 39 stations in California (Approx. 20 more in development)
• Can only be leased, for around $500 per month including fuel

Examples: Toyota Mirai, Honda Clarity FCV
EV Model Availability

- 47 Models currently available:
 - 15 BEV models
 - 29 PHEV models
 - 3 FCEVs
Batteries

• Key considerations: Energy and power.
 • Energy is how far you can go, power is how fast you can accelerate

• Power measured in kilowatts (kW)
 • A normal household microwave is rated at about 1 kW

• Capacity typically measured in kilowatt-hours (kWh)
 • Your electrical bill is measured in kWh.
Charging

Charging Levels

• Level 1 (120 volt)
 • Power level of standard plugs
 • 4 miles of range per hour (1 kW)
 • Cost: $0-$1500

• Level 2 (240 volt)
 • Power level of dryer plugs
 • 12-32 miles of range per hour (3-8 kW)
 • Cost: $1,200-$3,000

• DC Fast
 • 60-200 miles per hour (50+ kW)
 • Cost: $50,000+

Charging locations

• Home (level 1 or 2)
 • 75-85% of charging events

• Work (Level 1 or 2)
 • 15%-25% of charging events

• Public (Level 1, 2, or DC fast)
 • <10% of charging events
Market by vehicle type

US Annual Sales

- Total BEV
- Total PHEV
- Total FCEV

28 January 2019
2018 market by automaker
Vehicle Incentives

Purchase Incentives

1. Federal Tax Credit, up to $7,500 per vehicle. Phases out once a manufacturer sells 200,000 vehicles (GM & Tesla have hit cap, Nissan will soon)
2. CA Clean Vehicle Rebate Program (CVRP) funded by cap-and-trade revenue. $2500 for BEV, $5000 for FCEV, $1500 for PHEV.
3. Low Carbon Fuel Standard (LCFS) purchase incentive under development.
4. Several smaller programs offered by CARB, local utilities, air districts; mostly funded by cap-and-trade.

Other Incentives

1. Most ZEVs are allowed to use carpool lanes for up to 3 years.
2. Low Carbon Fuel Standard gives significant incentive for EV charging.
3. Some free/discounted parking incentives.
Importance of Incentives

• CVRP and federal tax credit is the most important incentive.
• HOV lane access is the second most important incentives.
• Incentives are getting more important over time.
 • As EVs get cheaper, more people are potentially in the market and 1000’s of dollars are a larger fraction of the purchaser’s budget.
Incentives should not be removed early

Netherlands PHEV Sales

Denmark BEV Sales

Georgia BEV Sales

28 January 2019
Infrastructure and Charging Incentives

- CPUC authorized over $700 million in charger installation in PG&E, SCE, SDG&E territory, mostly aimed at commercial vehicles, but several residential pilot projects.
- VW settlement funds used, in part, to support charger deployment
- Utilities have deployed local programs for charger installation, funded by rate-base, LCFS credit revenue or state incentives.
- LCFS adopted new provision to support deployment of DC FAST chargers, will likely result in several thousand installations.
ZEV Program

• Introduced in 1990, now in 10 states, soon 11 (Colorado).
• Goal is technology development and commercialisation
• Credit requirement is a percentage of total vehicle sales
 • 7% in 2019
 • 9.5% in 2020
 • 7-12% by 2025

For example if the mandate is 5%

Automaker continues to sell conventional vehicles
Automaker: sells 100,000 cars
Automaker must also sell X EVs totaling 5,000 credits
Why Are EV’s More Efficient Than Internal Combustion?

Typically, about 20-25% of fuel energy becomes motion.
Less Heat, Less Wasted Energy

60-70% of fuel energy becomes motion.
EV Emissions Are Affected by the Grid

- Cleaner grid = lower net emissions.
- Even on fairly dirty (coal-dominated) grid, EVs are usually no worse than a comparable car.
- As the grid gets cleaner, the emissions from EVs will decrease.
- Total EV load is likely to be relatively small. A 100% EV fleet would likely increase electricity demand by 20-30%
EVs purchase price is not changing yet....
...but EV technology and range is improving
Battery Prices Keep Falling

Pack Price $/kWh

- Whole Industry (Lowest Pack Price)
- Performance EVs (Market Leaders)

2011, 2018, 2025, 2032, 2039, 2046

2018, $231
2018, $93

Pack Price $/kWh:
- Whole Industry (Lowest Pack Price)
- Performance EVs (Market Leaders)

Ambrose 2019
Consumer Experience

Consumer engagement/knowledge/awareness of PEVs had not changed since 2014
Summary

• EVs are an ever-growing role in transportation
• There range of models is increasing rapidly
• Battery costs are falling rapidly
• While many models are still aimed at the higher end of the market, more affordable options are deploying rapidly
• EVs have strongly penetrated among some demographics, but most people still can’t correctly name one model
• EVs offer significant emissions benefits compared to conventional vehicles, under almost every circumstance
We Are Happy to Answer Questions!

Scott Hardman Ph.D.
shardman@ucdavis.edu
phev.ucdavis.edu

Colin Murphy Ph.D.
cwmurphy@ucdavis.edu
policyinstitute.ucdavis.edu
Twitter: @scianalysis

The Policy Institute now offers rapid response policy analysis – contact kelfleming@ucdavis.edu

To receive updates regarding the Institute of Transportation Studies research, policy briefs and related work, sign up on our listserv via this link: its.ucdavis.edu/join-our-mailing-list/.